So… it’s not clear if regular blogging will ever resume here, but in the meantime here is something to just clear the pipes, as it were. Although the results in this post are not new, occasionally I want to refer to them, and I don’t recall seeing an explicit reference in the literature. The proofs given here are not really proper expositions for those who don’t know Banach space theory; hopefully they will provide sufficiently suggestive outlines whose details can be filled in.

Theorem 1 below is something I noticed in 2016, but whose proof I forgot to write down at the time. Having just spent a half-hour trying to (re)construct a proof, it seems worth quickly writing down an argument here so that I can find it more easily. Theorems 2 and 3 are then natural things to point out, to indicate the context for Theorem 1; in both cases I’ve tried to piece together proofs from various bits of the literature.

Let **T** denote the space of trace-class operators on a separable infinite-dimensional Hilbert space H. Let **V** = L_{1}([0,1], **T**) be the space of Bochner-integrable **T**-valued functions on [0,1]; alternatively we could define **V** to be the projective tensor product of **T** with L_{1}.

**Theorem 1.** **T** and **V** are not isomorphic as Banach spaces.

**Theorem 2.** The dual spaces **T**^{*} and **V**^{*} are not isometrically isomorphic as Banach spaces.

**Theorem 3.** The dual spaces **T**^{*} and **V**^{*} are isomorphic as Banach spaces.

#### Proof of Theorem 1

It is known that the Banach space **T** has the *Radon-Nikodym Property* (RNP). I will not define the RNP here, but all we need to know is that it passes to closed subspaces, and that L_{1} does not have the RNP. Since **V** contains a (complemented) closed subspace isomorphic to L_{1}, it follows that **V** does not have the RNP.

**Question:** Is there a simpler proof of Theorem 1? Invoking the RNP feels like overkill.

#### Proof of Theorem 2

Observe that **T**^{*}=B(H) and **V**^{*}= L_{∞}([0,1], B(H)); we denote this second von Neumann algebra by **N** for sake of brevity. Suppose that B(H) is isometrically isomorphic (as a Banach space) to **N**. By a theorem of Kadison

R. V. Kadison,

Isometries of operator algebras.Annals of Math. 54 (1951), no. 2, 325&ndas;338

this would imply that there is a Jordan *-isomorphism φ from B(H) onto **N**. Because B(H) is a factor, Corollary 11 of Kadison’s paper implies that φ must either be a *-isomorphism or a *-anti-isomorphism. But this is impossible since N has non-trivial centre, while B(H) has trivial centre.

**Question:** Can we obtain a more direct proof by investigating Kadison’s arguments and specializing them to the case of B(H)?

#### Proof of Theorem 3

This can be deduced from a more general result of Robertson and Wassermann:

A. G. Robertson, S. Wassermann,

Completely bounded isomorphisms of injective operator systems.Bull. London Math. Soc. 21 (1989), 285–290.

However, it seems better to sketch a simpler argument for this particular case, which admittedly uses some of the same ideas, specifically, some form of Pelczynski’s decomposition method.

Observe that **T**^{*}=B(H) and **V**^{*}= L_{∞}([0,1], B(H)). It is easy to construct an isomorphism of Banach spaces between L_{∞}[0,1] and **C** ⊕ L_{∞}[0,1]; a minor variant of this gives an isomorphism of Banach spaces between **V**^{*} and **T**^{*}⊕ **V**^{*}.

Similarly, there is an obvious isomorphism of Banach spaces between L_{∞}[0,1] and L_{∞}[0,1]⊕L_{∞}[0,1], and a minor variation of this gives an isomorphism of Banach spaces between **V**^{*} and **V**^{*}⊕ **V**^{*}.

The final ingredient in this proof is the observation that **T**^{*} is isomorphic as a Banach space to **F**⊕ **B**^{*}. To justify this, note that there is a projection from B(L_{2} ⊗ H) onto L_{∞}([0,1],B(H)) = **V**^{*}, and that the former space is isomoprhic to B(H) since L_{2}⊗ H is isomorphic to H.

Putting things together:

T^{*}≅F⊕V^{*}≅F⊕ (V^{*}⊕V^{*}) ≅(F⊕V^{*}) ⊕V^{*}≅T^{*}⊕V^{*}≅V^{*}

as required.

## on the surface again, with a job to do

Let them have what was under the water. What lived in Venice was still afloat.

—from Venice Drowned by Kim Stanley Robinson —

## no one told you when to run

I’m going to watch the bluebirds fly over my shoulder

I’m going to watch them pass me by, maybe when I’m older

every year is getting shorter, never seem to find the time;

plans that either come to naught, or half a page of scribbled lines

## I slept through the night, I got through to the dawn

update 2018-06-10: replaced first link with better version

*— from Ulysses by Alfred, Lord Tennyson*

I wrote down my dream, I made it this song

It was a pretty good day so far

Hello, 2018.

## behind brown and mild eyes

## I wish that I was bulletproof

## the judges will decide; the likes of me abide

And there’s a lifeline slipping as the record plays

nothing more to say

no more ace to play